Eocene break-off of the Neo-Tethyan slab as inferred from intraplate-type mafic dykes in the Gaoligong orogenic belt, eastern Tibet

Yi-Gang Xu a,⁎, Jiang-Bo Lan a,b, Qi-Jun Yang a,c, Xiao-Long Huang a, Hua-Ning Qiu a

a Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640 Guangzhou, China
b Graduate School of Chinese Academy of Sciences, Beijing 100039, China
c Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640 Guangzhou, China

⁎ Corresponding author. Tel.: +86 20 85290109; fax: +86 20 85290261.
E-mail address: yigangxu@gig.ac.cn (Y.-G. Xu).

A B S T R A C T

Eocene (40–42 Ma) basaltic dykes in the Gaoligong–Tengliang belt, eastern Tibet, are characterized by high Na2O (2–4%), in contrast with the widespread post-collisional potassic and ultrapotassic rocks in the Tibetan plateau. Despite the ubiquitous negative Nb anomalies, these dykes have relatively high Nb and Zr contents, making them distinctly different from the Gangdese arc magmas. All these, together with the positive Nb anomaly in some samples, indicate an intraplate affinity for the Gaoligong–Tengliang dykes. Specifically, the Gaoligong dykes represent the asthenosphere-derived melts which has been contaminated to various degrees by the lithosphere mantle-derived melts, whereas the Tengliang samples were directly derived from an enriched lithosphere mantle. The thin lithosphere (~80 km) inferred from basalt geochemistry is unusual in Tibet, thus demanding a peculiar mechanism to thin lithosphere. A slab break-off model is preferred given the geochemical contrast between pre-40 Ma and post-40 Ma magmas in Tibet, and the temporal correlation among this intraplate magmatism, the termination of Gangdese arc magmatism and regional thermally-driven metamorphism. Therefore, the occurrence of intraplate-type magmas in the Gaoligong orogenic belt likely represents magmatic expression of the detachment of subducting Neo-Tethyan slab from the Indian continental plate during the Eocene. In the light of the slab break-off concept and thermo-mechanical modeling, the Eocene slab break-off furthermore suggests the onset of the India–Asia collision between 52 and 57 Ma.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Petrogenetic understanding of magmas emplaced at different tectonic settings provides insights into thermal and physical relationships between crust/mantle melting and tectonic evolution (Wilson, 1989). Magmatism is widespread in Tibetan Plateau and has been used to tackle the tectonic evolution of this active collision zone (Coulon et al., 1986; Arnaud et al., 1992; Turner et al., 1993, 1996; Miller et al., 1999; Williams et al., 2001; Chung et al., 2003, 2005; Ding et al., 2003; Hou et al., 2004; Wang et al., 2005). While there is a consensus that magmatism reflects the response of the upper mantle and crust to the complex geodynamic evolution of this area, the relative role of northward subduction of Neo-Tethyan oceanic plate, slab rollback, slab break-off, continent–continent collision and subsequent detachment of sub-continental lithosphere in magmatic generation is a matter of hot debate (e.g., Chung et al., 2005). In particular, while the slab break-off must have taken place during the Indo-Asian collision, its timing and magmatic response to this event remain controversial. On the basis of a petrologic study on the Greater Himalayan metamorphic core, Kohn and Parkinson (2002) argued that decoupling of the oceanic lithosphere took place during the Eocene time. These authors suggested that late Eocene K-rich magmas in southeastern Tibet may represent magmatic expression of the slab break-off. A similar timing of slab break-off has been inferred by Chung et al. (2005) but on the basis of the termination age of the Gangdese arc magmatism. On the other hand, Mahéo et al. (2002) proposed that the Neogene magmatic and metamorphic evolution of the South Asian margin was controlled by slab break-off of the subducting Indian continental margin starting at about 25 Ma. This version of slab break-off model has been adopted by Hou et al. (2004) to explain mantle-derived ultrapotassic magmatism (17–25 Ma), which in turn triggered partial melting of the thickened lower crust to generate the Miocene (10–18 Ma) potassic adakites from southern Tibet.

If the timing of slab break-off reflects the diachronous evolution of the Tibetan plateau, then it is unclear why different magma compositions were produced through time across the Tibetan plateau by essentially the same trigger mechanism. The modeling by von Blankenburg and Davies (1995) suggested that as the subducted oceanic plate breaks off, the underlying asthenosphere rises into the lithosphere break and impinges at the base of the thickened lithosphere of the overlying plate. This process will result in a heat supply that can
induce melting and/or metamorphism of the overlying lithosphere, and eventually will induce decompression melting of the asthenosphere generating mafic magmas similar to oceanic island basalts (Turner et al., 1999; Maury et al., 2000; Ferrari, 2004). Whereas potassic magmatism is common in convergent zones, the occurrence of intraplate-type magmatism in such a setting is rather rare and thus has been considered diagnostic of slab break-off process (D’Orazio et al., 2001; Coulon et al., 2002; Ferrari, 2004). Herein we report the occurrence of Eocene intraplate-type mafic dykes in the Gaoligong–Tengliang belt in eastern Tibet and suggest that this provides the evidence for the break-off of the Neo-Tethyan plate during the Indo-Asian collision.

2. Geologic background and Cenozoic magmatic evolution in Tibet

The Tibetan Plateau is composed of a number of diverse exotic blocks that were accreted at different time. These blocks, namely high
Himalaya, Lhasa and Qiangtang, are separated by different sutures (Fig. 1). The Yarlung-Tsangpo suture separated the Indian plate and Lhasa block. The latter is separated from the Qiangtang Terrane by the Bangong-Nujiang suture zone. The ages of these successive sutures decrease from north to south. For instance, the closure of the Mesotethys (leading to the Bangong-Nujiang suture) took place during the late Jurassic and early Cretaceous (Yin and Harrison, 2000; Kapp et al., 2005), and the closure of the neo-Tethys (leading to the Yarlung-Tsangpo suture) happened either in early Cenozoic (Yin and Harrison, 2000; Ding et al., 2003) or in Oligocene (Aitchison et al., 2007). The onset age of the Indo-Asian collision remains uncertain, largely because of different approaches used by different researchers and diverse definition of continental collision. For instance, Rowley (1996) considered the youngest marine strata of the Tethyan Himalaya in south-central Tibet as an indicator of the initiation of Indo-Asian collision in this region. Based on the paleogeographic analyses, he put forth a popular view that collision initiated in the northwestern Himalaya and progressed to the east. However, whether the disappearance of marine deposits marks the onset of collision has been questioned (Wu et al., 2008). Additional studies are needed to definitively test this diachronous collision model.

Two magmatic suites have been identified in the Lhasa terrane, namely southern Gangdese belt and northern magmatic belt (Coulon et al., 1986; Chung et al., 2005; Chu et al., 2006). The Gangdese belt, a huge quasi-continuous 2600-km long and 100-km wide belt, is composed of the Jurassic, late Cretaceous to Paleogene batholith ranging from gabbro to granite (Debon et al., 1986; Kapp et al., 2005; Wen et al., 2008). The northern magmatic belt is dominated by Jurassic–Early Cretaceous peraluminous or S-type granitic plutons (Xu et al., 1985; Lee et al., 2003). The boundary between the two magmatic belts is poorly defined. Recent investigation shows that the northern magmatic belt extends to rather south, overlapping the area occupied by the Gangdese plutons and the Linzizong volcanics (Chu et al., 2006).

The area covered by the north–south trending Gaoligong belt is situated to east of the eastern Himalayan Syntaxis (Fig. 1). This mountain range is 3000 m high and marks the divide between the Long Chuan River in the west and the Nu (Salween) River in the east. The basement in this area is composed of Precambrian high-grade metamorphic, late Paleozoic clastic sedimentary rocks and carbonates, and Mesozoic granitic intrusives. The Gaoligong–Tengliang region is geographically bounded by the Gaoligong Fault to the east. Recent SHRIMP Zircon U–Pb dating on the granitic batholiths reveals three episodes of magmatism in the Gaoligong–Tengliang area, which migrate form NE to SW (Yang et al., 2006; Xu et al., submitted for publication). The Gaoligong granites in the northeast were mainly emplaced during early Cretaceous (126–117 Ma), whereas the Tengliang granite, situated southwest of the Gaoligong belt, was emplaced in late Cretaceous (68–76 Ma). In the Yingjiang area, further west to the Tengliang area, Paleogene intrusions (53–55 Ma) were emplaced. Both Gaoligong and Tengliang granites are dominated by biotite-bearing, peraluminous and strongly peraluminous granite/leucogranite and granodiorites. Negative zircon ε_{Hf} (t) values (~ 12 to 4) indicate a provenance of Proterozoic sedimentary source. They thus bear strong similarities to those in the northern magmatic belt in the Lhasa terrane in terms of lithology, geochemistry and emplacement age. However, the young plutons near the China- Burma boarder show I-type lithologic characteristics and have positive zircon ε_{Hf} (t), somehow resembling the Gangdese batholith. This observation leads to the suggestion that the Gaoligong–Tengliang belt is a rotated, eastern extension of the Lhasa block (Xu et al., submitted for publication).

![Diagram summarizing the main episodes of magmatism in southern Tibet, cooling rate of the Qianggeren granite (He et al., 2007) and rate of convergence between India and Asia (right-hand ordinate) through the Late Cretaceous to Quaternary time periods (Lee and Lawver, 1995). The temporal scheme of the Gangdese magmatism is after Wen et al. (2008). Also shown for comparison are the ε_{Nd} range of the Gangdese arc magmas (pre-40 Ma Gangdese batholith and Linzizong volcanics) and post-collisional (post-40 Ma) potassic and ultrapotassic magmas. Data sources: Coulon et al. (1986), Arnaud et al. (1992), Turner et al. (1996), Miller et al. (1999), Williams et al. (2001), Ding et al. (2003), Chung et al. (2003, 2005), Hou et al. (2004), Mo et al. (2007). Note that the emplacement of the Gaoligong–Tengliang intraplate dykes is temporally coincident with the onset of rapid cooling of the batholith and termination of the Gangdese arc magmatism.](image-url)
2.1. Cenozoic magmatic evolution in Tibet

Cenozoic magmatism can be separated into three periods (Fig. 2). The first episode (70–40 Ma), termed Gangdese arc magmas, is marked by the widespread 5-km-thick Linzizong volcanic succession and the huge-scale granitoid batholiths in the southern Gangdese terrane (Chung et al., 2005; Mo et al., 2007). The 40Ar/39Ar and zircon U–Pb dating that indicate that the Linzizong eruption started at 65–69 Ma and continued to ~40 Ma (Zhou et al., 2004; He et al., 2007). Granitic rocks of the Gangdese batholiths are mainly composed of granodiorite, quartz diorite, quartz monzonite and monzogranite, containing abundant mafic microgranular enclaves (Mo et al., 2007; Wen et al., 2008). U–Pb SHRIMP dating show that these granitoids were emplaced during 47–52 Ma (Schärer and Allegre, 1984, Mo et al., 2005; Dong et al., 2005; Wen et al., 2008). They have positive εNd(t) (+2.3–+8.3, Dong et al., 2005), similar to the values determined for the least crustally contaminated Lingzizong volcanic rocks (Mo et al., 2007).

The Gangdese arc magmatism was followed by a magmatic quiescence (40–26 Ma; Fig. 2), which may correspond to crustal thickening as the result of tectonic shortening. The compressional stress and thickening of continental lithosphere inhibited decompression melting in sublithospheric mantle. The magmatism resumed since ~26 Ma. These post-collisional magmas, largely emplaced during ~26 Ma and 10 Ma in southern Tibet, are composed of three types (Mo et al., 2007): (1) adakitic rocks emplaced during 25–12 Ma with a peak at 16 Ma; (2) a ~1300-km-long NW–ESE belt (between 80°E and 91°E) of potassic–ultrapotassic volcanic rocks dated 26–10 Ma; and (3) some peraluminous granites of 24–18 Ma. Petrogenesis of these rocks are complex, involving partial melting of the thickened lower crust, subducted Indian mantle lithosphere, Tethyan ocean crust, terrigenous sediments, metasomatized Tibetan lithosphere and crustal level assimilation (Turner et al., 1993, Miller et al., 1999, Williams et al., 2001; Chung et al., 2003; Ding et al., 2003; Hou et al., 2004; Mo et al., 2006). One characteristic of these rocks are their highly negative εNd(t) values that contrast with the generally positive εNd(t) values observed in the Gangdese arc magmas (Fig. 2). The ultrapotassic rocks located to west of the longitude of 87°E show Sr–Nd isotopic compositions that resemble that of the Indian crustal basement. This has been taken as evidence for the subduction of the Indian continental plate underneath the Lhasa Terrane since the Oligocene (Zhao et al., 2003; Guo et al., 2007).

3. Samples and analytical methods

Mafic dykes were collected in late Cretaceous granites near Lushui-Pianma and near Lianghe (Fig. 1). The Lushui-Pianma mafic dykes intruded the late Cretaceous Gaoligong granites (68–76 Ma). The Lianghe samples were collected from dykes that intruded ~54 Ma granites at Nangsong. The width of these dykes range from 1 m to 6 m. The contact between dyke and granite is generally sharp. These dykes are 18 Ma.

Ten samples were sawed into slabs and the central parts were Ten samples were sawed into slabs and the central parts were used for bulk-rock analyses. The rocks were crushed in a steel mortar and ground in a steel mill. Bulk-rock abundances of major elements were determined using an X-ray fluorescence spectrometer (XRF) on glass disks at the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (GIGCAS), following analytical procedures described by Goto and Tatsumi (1996). A pre-ignition was used to determine the loss on ignition (LOI) prior to major element analyses. Analytical uncertainties for majority of major elements analyzed were estimated at smaller than 1% from repeatedly analyzed U.S.G.S. standards BHVO-2, MRG-1 (basalt) and W-2 (diabase). Bulk-rock trace-element data [rare earth elements (REE), Sc, Ti, V, Cr, Cs, Sr, Y, Ba, U, Tb, Th, Pb, Zr, Hf, Nb, Ta] were obtained by inductively coupled plasma-mass spectrometry (ICP-MS) at GIGCAS, following the analytical procedures described by Xu (2002). Precision for REE and HFSE is estimated to be 5% from repeatedly analyzed U.S.G.S. standards BHVO-1 and W-2 (Xu, 2002).

For Sr–Nd isotopic analyses, sample powders (~100 mg) were dissolved in distilled HF–HNO3 Savillex screwtop Teflon beakers at 150 °C overnight. Sr and REE were separated on columns made of Sr and REE resins (4,4′-di-t-butylcyclohexano 18-crown-6) of the Eichrom Company using 0.1% HNO3 as eluant. Separation of Nd from the REE fractions was carried out on HDEHP (phosphoric acid, bis (2-ethylhexy) ester) columns with a 0.18 N HCl eluant. The isotopic analyses were performed using a Micromass Isotope Probe Multi-Collector ICPMS at GIGCAS. Measured Sr and Nd isotopic ratios were normalized using a 86Sr/88Sr value of 0.1194 and a 146Nd/144Nd value of 0.7219, respectively. The Sr and Nd blanks during the period of analyses are 0.5 ng and 0.3 ng, respectively. Analyses of standards during the period of analysis are as follows: NBS987 gave 87Sr/86Sr = 0.710243 ± 14 (2σ); Chin Etou gave 143Nd/144Nd = 0.512124 ± 11 (2σ), equivalent to a value of 0.511860 for the La Jolla international standard (Tanaka et al., 2004).

The 40Ar/39Ar dating was carried out at GIGCAS by using GV5400 mass spectrometer following analytical procedures described by Qiu and Jiang (2007). Argon gas was extracted from the sample by step-
heating using MIR10 CO₂ continuing laser. The released gases were purified by two Zr/Al getter pumps operated for 5 to 8 min at room temperature and ~450 °C respectively. The background of the sample hold is lower than 2 mV pre-experiment, while the signal of the sample is mostly between 40–200 mV. The ⁴⁰Ar/³⁹Ar dating results are calculated and plotted using the ArAgeCALC software by Koppers (2002).

The J-value was 0.00955 as determined by ZBH-2506 biotite (132 Ma) flux monitors.

4. Results

4.1. Ar–Ar geochronology

Two samples (GL-24, TL-7) were selected for ⁴⁰Ar/³⁹Ar dating. The plateau ages for these two samples are 39.7±0.7 Ma and 41.8±0.5 Ma (Fig. 3), respectively, and represent more than 90% cumulative ³⁹Ar plateau ages for these two samples are 39.7±0.7 Ma and 41.8±0.5 Ma.

Moreover, these rocks are characterized by relatively high Na₂O but low K₂O contents, making them distinct from the widespread post-collision potassic–ultrapotassic rocks and Gangdese arc magmas in the Tibetan plateau (Fig. 4a–b).

The Gaoligong–Tengliang dykes are more basic than the Linzizong volcanics (Fig. 5). The sample GLS-21 has the highest MgO content (~20%), consistent with its cumulate texture. The remaining samples

Table 1

<table>
<thead>
<tr>
<th>Laser output energy (W)</th>
<th>³⁶Ar(a) (mV)</th>
<th>³⁸Ar(d) (mV)</th>
<th>³⁹Ar(k) (mV)</th>
<th>⁴⁰Ar(r) (mV)</th>
<th>Age (Ma)</th>
<th>±2σ (Ma)</th>
<th>⁴⁰Ar (％)</th>
<th>³⁹Ar (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL-7 (whole rock)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.00003</td>
<td>0.00001</td>
<td>0.00331</td>
<td>0.01308</td>
<td>112.9±2.7</td>
<td>62.3</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>0.00005</td>
<td>0.00011</td>
<td>0.00186</td>
<td>0.00855</td>
<td>34.2±2.9</td>
<td>55.41</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.00003</td>
<td>0.00343</td>
<td>0.00855</td>
<td>59.8±1.2</td>
<td>65.97</td>
<td>0.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>0.00002</td>
<td>0.00637</td>
<td>0.01343</td>
<td>43±0.6</td>
<td>71.56</td>
<td>1.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.00002</td>
<td>0.00708</td>
<td>0.01353</td>
<td>39±0.6</td>
<td>73.93</td>
<td>1.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.00002</td>
<td>0.00893</td>
<td>0.01704</td>
<td>38.9±0.5</td>
<td>75.81</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.00003</td>
<td>0.01662</td>
<td>0.03317</td>
<td>40.7±0.5</td>
<td>78.55</td>
<td>4.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.00003</td>
<td>0.02147</td>
<td>0.04355</td>
<td>39.5±0.4</td>
<td>81.05</td>
<td>5.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.00003</td>
<td>0.02385</td>
<td>0.04472</td>
<td>38.3±0.3</td>
<td>85.5</td>
<td>5.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.00003</td>
<td>0.03401</td>
<td>0.06475</td>
<td>38.8±0.3</td>
<td>86.74</td>
<td>8.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.00003</td>
<td>0.0359</td>
<td>0.06837</td>
<td>38.3±0.3</td>
<td>87.59</td>
<td>8.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.00003</td>
<td>0.03108</td>
<td>0.05842</td>
<td>38.3±0.3</td>
<td>88.1</td>
<td>7.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.00002</td>
<td>0.02799</td>
<td>0.02566</td>
<td>38.4±0.3</td>
<td>89.42</td>
<td>6.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.00002</td>
<td>0.03293</td>
<td>0.06525</td>
<td>40.4±0.3</td>
<td>90.13</td>
<td>8.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.00003</td>
<td>0.03981</td>
<td>0.08078</td>
<td>41.4±0.3</td>
<td>91</td>
<td>9.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.00002</td>
<td>0.02364</td>
<td>0.0478</td>
<td>40.9±0.3</td>
<td>90.54</td>
<td>5.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.00001</td>
<td>0.0211</td>
<td>0.04367</td>
<td>42.2±0.3</td>
<td>93.28</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.00001</td>
<td>0.01248</td>
<td>0.02539</td>
<td>41.5±0.5</td>
<td>92.96</td>
<td>3.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.00001</td>
<td>0.02117</td>
<td>0.04721</td>
<td>45.0±0.4</td>
<td>92.64</td>
<td>5.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.00003</td>
<td>0.03424</td>
<td>0.08395</td>
<td>49.9±0.4</td>
<td>91.23</td>
<td>8.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GL-24 (whole rock)</td>
<td>T1=41.78±0.52 Ma</td>
<td>T2=42.23±0.21 Ma</td>
<td>T3=41.22±1.33 Ma</td>
<td>T4=41.30±1.34 Ma</td>
<td>T1 — Plateau age; T2 — molten age; T3 — isochron; T4 — inverted isochron.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2. Geochemistry

Elemental and isotopic compositions are listed in Table 2. The Gaoligong–Tengliang mafic rocks have SiO₂ contents ranging from 46% to 57% with the majority between 46% and 50%. Their Mg values (0.51–0.76) suggest that they have experienced minor to moderate differentiation. In the plot of Na₂O+K₂O against SiO₂, the Gaoligong–Tengliang mafic rocks straddle the alkali basalt-tholeite boundary. Although plotted overlapping with the Linzizong volcanic rocks, the Gaoligong samples display a more restricted range of compositions with most corresponding to basalts (Figs. 4a, 5a).

The Gaoligong–Tengliang dykes are more basic than the Linzizong volcanics (Fig. 5). The sample GLS-21 has the highest MgO content (~20%), consistent with its cumulate texture. The remaining samples
define a compositional trend different from that of the Linzizong volcanics. Specifically, they show a negative correlation between Al₂O₃ and MgO, which contrasts with the positive correlation defined by the Linzizong volcanics. Moreover, they have higher TiO₂ and Nb contents than the Linzizong volcanics. All these rule out a direct petrogenetic link between the two suites.

The primitive mantle-normalized trace-element distribution patterns of the most Gaoligong–Tengliang dykes are characterized by
We thus conclude that the Gaoligong–Tengliang mafic dykes are of intraplate-type basalts, rather than arc-related magmas. They were most likely related to the asthenospheric upwelling during the Eocene in the studied area. The development of Nb–Ta depletions may have resulted either from assimilation of crustal component(s) during magmatic ascent and/or magma chamber processes, or mixing with melts derived from enriched lithospheric mantle. Distinction between these alternatives will be discussed in the following section.

5.2. Lithosphere mantle–asthenosphere interaction

ε_{Nd} values of the Gaoligong–Tengliang dykes correlate positively with Nb/La, but negatively with SiO$_2$ and MgO (Fig. 9). These relationships are consistent with mixing of two isotopically distinct components. As argued above, one component with relatively high ε_{Nd} and high Nb/La is plausibly from the asthenosphere. Another mixing component, characterized by low ε_{Nd} and Nb/La (Fig. 9a), may be either from the crust or the lithospheric mantle, or both. The positive correlation between Nb/La and ε_{Nd} (Fig. 9a) and the negative correlation between SiO$_2$ and ε_{Nd} (Fig. 9b) are consistent with crustal contamination processes. Country rocks in the studied area include Proterozoic sedimentary rocks and Mesozoic granitic batholith. The Proterozoic Chongshan Formation, characterized by a high extent of assimilation of felsic crust in the studied dykes will not maintain their basaltic compositions. On the other hand, if the upper crust would also display the high extent of assimilation of felsic crust in the studied dykes will not maintain their basaltic compositions. On the other hand, if the upper crust was involved in the genesis of the studied dykes, the most contaminated samples with the lowest ε_{Nd} would also display the lowest Sm/Nd and MgO, because upper crust is generally characterized by LILE-enrichment (low Sm/Nd) and low MgO contents. The negative correlation between MgO and ε_{Nd} (Fig. 9c) and Sm/Nd (Fig. 9d) are opposite to the trends expected by crustal contamination model. As such, crustal contamination cannot adequately account for geochemistry of the Gaoligong–Tengliang basaltic dykes.

The Tengliang samples exhibit well-developed Nb–Ta depletions (Fig. 6b). The Nb/La ratios in these samples remain virtually unchanged irrespective of MgO and SiO$_2$ contents (Fig. 9e, f). This suggests the Nb–Ta deficits in the Tengliang samples inherited that of the source, rather than from crustal contamination. The possible
candidate for this source is the metasomatized lithospheric mantle, which is likely in the form of pyroxenite-vein plus refractory peridotites. Recent experiments demonstrated that melting of pyroxenite-bearing peridotites is capable of producing Si-rich basalts (Hirschmann et al., 2003; Kogiso et al., 2004), with geochemical characteristics similar to those for the Tengliang samples.

It can thus be concluded that the Tengliang dykes were likely derived from by the continental lithospheric mantle (CLM) which has been metasomatized by slab-derived fluids during previous subductions. In Fig. 9a and b, Tengliang and Gaoligong samples define a coherent correlation, with the Tengliang samples forming an end of the correlation. Therefore the Gaoligong samples likely represent melts derived from asthenosphere, mixed with melts from an enriched lithospheric mantle.

5.3. Evidence for a shallow asthenospheric mantle source

The most primitive rocks of the Gaoligong–Tengliang mafic dykes are q-hy-normative. Compared to the experimental results on partial melting of anhydrous mantle peridotites (Takahashi and Kushiro, 1983; Hirose and Kushiro, 1993), such a petrologic feature would indicate a pressure of magma segregation of 15–20 kbar. This relatively shallow depth of melt extraction is further supported by the REE modeling. Fig. 10a shows the [Sm/Yb]n versus [La/Sm]n ratios for the Gaoligong–Tengliang samples, together with the batch equilibrium melting trends for various proportion of clinopyroxene and garnet left in the solid residue, for different degrees of partial melting (D’Orazio et al., 2001). Because Yb is compatible in garnet, whereas La and Sm are incompatible, La/Sm and Sm/Yb will be strongly fractionated when melting degree is low. In contrast, La/Sm is
only slightly fractionated and Sm/Yb is nearly unfractionated during the melting in the spinel stability field. It is noted that the Gaoligong–Tengliang mafic dykes are plotted within the melting trends with no to low content of garnet (Cpx:Grt=6:1) in source, suggesting that variable degrees (1–10%) of batch melting of a hypothetical mantle source with small amount of garnet can generate the La/Yb–Sm/Yb systematics of the studied rocks. This is further confirmed by Fig. 10b, in which the Gaoligong–Tengliang rocks can be viewed as mixture of melts derived from a garnet-bearing mantle and a spinel-bearing source. The relatively low Dr/Yb and La/Yb suggest that the Gaoligong samples are dominantly from the spinel facies mantle (>95%). Therefore, it can be inferred that the Gaoligong basalts were generated at a relatively shallow depth, mostly within the spinel stability field. If the concept of the melting column (Langmuir et al., 1992) applies and the depth of the spinel to garnet transition at the peridotite solidus is assumed at ∼75–80 km following McKenzie and O’Nions (1991) and Robinson and Wood (1998), this implies that the decompressing asthenosphere rose to a relatively shallow level (<80 km).

Previous evaluation suggests that the Gaoligong dykes represent the asthenosphere-derived melts which has been contaminated to various degree by the lithosphere mantle-derived melts, while the Tengliang samples represent lithosphere mantle-derived melts. This raises the question as to whether the composition of contaminated asthenospheric melts can still be used to infer the melting condition. The two suites show similar REE patterns with the Tengliang samples having slightly lower HREE than the Gaoligong dykes (Fig. 6). It is thus conceivable that the contamination by CLM-derived melts will result in lowering in HREE contents in the asthenospheric magmas. Such a contamination will increase Dy/Yb and La/Yb ratios, which can be translated to slight overestimation of melting depth for the Gaoligong samples. Clearly, this does not affect our inference for a shallow asthenospheric mantle source.

5.4. Triggers of intraplate-type magmatism in convergent zone

Any proposed geodynamic model must explain the following characteristics of the Gaoligong–Tengliang mafic dykes: (1) intraplate-type geochemical affinity; (2) small volume; (3) tight time span of magmatism, and (4) the temporal coincidence with a number of geologic events in Tibet. The intraplate-type geochemical characteristics of the Eocene Gaoligong–Tengliang samples require upwelling of the convective asthenosphere to a relatively shallow level (<80 km). The shallow asthenospheric source is in great contrast with the...
current thick lithosphere beneath the Tibetan Plateau (>120 km; Meissner et al., 2004). This contradiction implies that the lithosphere during the Eocene either was not as thick as in modern time, or had somehow been thinned. It remains controversial as to when lithospheric thickening took place in Tibet. Appearance of ∼80 Ma adakitic intrusions (Wen et al., in press) and adakite-like rocks in the Pana (Linzizong) rhyolitic succession (50–40 Ma) (Mo et al., 2007) implies the presence of garnet as a residual phase in the mantle source. Therefore, the lithosphere may have already been thickened before 40 Ma, a condition that would prevent the asthenosphere from arising and melting. According to McKenzie and Bickle (1988), dry asthenosphere can melt only when the lithosphere is sufficiently thinned (<70–80 km). Consequently, the occurrence of the intraplate-type magma suggests that the lithosphere in Tibet was locally thinned to certain extent so that decompression melting of the asthenosphere could happen. This demands a dynamic mechanism that is able to thin the lithosphere in orogenic context. At least three competing mechanisms can be envisaged: (1) delamination due to the gravity-induced collapse of the orogenic root during late orogenic extension (Gardien et al., 1997); (2) convective thinning of the lithospheric root (Houseman et al., 1981) and (3) slab break-off affecting the lithospheric structure in orogenic belt (von Blanckenburg and Davies, 1995).

The delamination due to the gravity-induced collapse of the orogenic root would bring the asthenosphere into contact with the Moho. This induces intensive crustal melting and decompositional melting of the asthenosphere if the crust is not very thick (Turner et al., 1999). Although crustal melting occurred in the studied area, the granitic plutons were mainly emplaced in the late Cretaceous (66–76 Ma) and Paleogene (50–55 Ma) (Xu et al., submitted for publication). These crustal melting events thus predated considerably the asthenosphere upwelling-induced intraplate magmatism.

Fig. 9. Plot of εNd(t) against (a) Nb/La, (b) SiO₂, (c) MgO and (d) Sm/Nd for the Gaoligong-Tengliang mafic dykes. Plot of Nb/La against (e) MgO and (f) SiO₂.
Negative ε_{Hf} (−12 to −4) in zircon from the Gaoligong–Tengliang batholiths further indicate a predominant Proterozoic sedimentary source for the crustal melts with little mantle contribution (Xu et al., submitted for publication), a feature inconsistent with delamination-induced crustal melting. Therefore, if massive crustal melting is the hallmark of delamination, we find little evidence for it in the Gaoligong–Tengliang area. Another prediction of the delamination model is widespread, intensive asthenosphere-derived magmas. Although the volume of intraplate-type magmas in Tibet is poorly constrained at present, available data suggest that it is rather limited. In addition to the Gaoligong dykes, magmatism of similar ages with potential involvement of asthenospheric components is only documented in the sub-volcanic dykes in the Dazi basin, southern Lhasa Terrane (Gao et al., in press). Given the limited occurrence of OIB-type magmatism at the Eocene and the general lack of coeval large-scale crustal melting, the delamination model seems inappropriate in the Gaoligong case.

In the case of convective thinning, as the lithosphere is progressively heated from below, the lower boundary layer of the mechanical lithosphere melts, followed by the shallower lithospheric mantle (Turner et al., 1999). Whether decompression melting of the asthenosphere occurs depends on the level to which the asthenosphere rises (McKenzie and Bickle, 1988). Therefore, progressive decreasing in melting depth and transition in magma source from the lithospheric mantle to the asthenosphere are expected with the convective thinning model. In the present study, the 42 Ma Tengliang dykes, predominately derived from the enriched lithospheric mantle, have relatively lower HREE contents ($\text{Yb}=1.8–2.7$ ppm, i.e., relatively deep melting depth) than the ~40 Ma Gaoligong dykes ($\text{Yb}=2.9–3.4$ ppm, except for GL-8 which has $\text{Yb}=2.1$ ppm), which represent asthenospheric melts contaminated by CLM-derived melts. This magmatic evolution pattern seems consistent with the prediction by the convective thinning model. However, in a broader time scale, the ~40 Ma intraplate-type magmatism in Tibet was predated by the Linzizong volcanism which is characterized by calc-alkaline affinity and overwhelmingly depleted isotopic composition (Mo et al., 2007), rather than an enriched isotopic signature as would be expected by the convective removal model. There is a consensus that the Linzizong volcanic rocks represent arc magmatism related to the corner convection induced by rollback of the Neo-Tethyan plate (Ding et al., 2003; Chung et al., 2005). In this sense, the transition from Cretaceous–early Tertiary subduction-related magmatism to the Eocene intraplate type is inconsistent with the prediction by the convective removal model. Moreover, convective thinning is likely in a large scale, resulting in diffusive and widespread volcanism, a prediction un-matched by the limited volume of the Eocene intraplate magmatism in Tibet.

In the slab break-off model, the detachment of a lithospheric slab allows the asthenosphere underlying the downwelling plate to flow up into the broken slab window above the sinking slab. The heat supply from the uprising asthenosphere can affect overlying lithosphere, yielding characteristic magmatic evolution trend. Asthenosphere upwelling will induce partial melting of the overlying lithospheric mantle previously metasomatized during subduction. If the detachment occurs at shallow depth, decompression melting of the asthenosphere can take place (von Blanckenburg and Davies, 1995). Thermal flux can cause crustal melting and heated crust facilitates the involvement of crustal components within mantle-derived melts through assimilation–fractionation–crystallization processes. Hence, the slab break-off model predicts a magmatic evolution pattern similar to that envisaged by the convective thinning model. However, unlike the diffusive and widespread pattern in the convective thinning case, slab detachment predicts a narrow, linear zone of magmatism of limited extent.

Limited occurrence of the intraplate magmas does not allow the definition of magmatic pattern in Tibet, in particular with respect to the Yarlung-Tsangpo suture. The studied dykes were collected from late Cretaceous–Paleogene granites, which are located distal to the Bangong-Nujiang suture but proximal to the Gangdese belt (Xu et al., submitted for publication). The sub-volcanic dykes in Dazi basin (southern Lhasa) show similar emplacement age and geochemistry to the Gaoligong dykes (Gao et al., in press). These suggest that the sporadic intraplate magmas likely run parallel the Gangdese belt.

The preference of the Eocene slab break-off model over other models is also built on the close temporal correlation between the intraplate-type magmatism and a number of geologic events/observations in southern Tibet, including the termination of Gangdese arc magmatism (Chung et al., 2005; Mo et al., 2007), the onset of the rapid cooling of the Gangdese batholiths (He et al., 2007), thermal metamorphism (e.g., Kohn and Parkinson, 2002; DeCelles et al., 2002) and geochemical contrast between pre-40 Ma and post-40 Ma magmatism in Tibet. As will be demonstrated in the following section, these characteristics are consistent with the major predictions by the slab break-off model (von Blanckenburg and Davies, 1995).

5.5. Other evidence for an Eocene slab break-off model

5.5.1. Termination of the Gangdese arc magmatism

The Gangdese arc-related magmatism ceased no later than ~40 Ma and since that time igneous rocks of calc-alkaline geochemical affinities have not been emplaced in southern Tibet. Therefore, the Gangdese magmatism marked the termination of subduction of oceanic lithosphere (Chung et al., 2005). The emplacement age of the Gaoligong–Tengliang dykes is roughly the same as that of the youngest Gangdese arc magmatism (Zhou et al., 2004; Chung et al., 2005).
This coincidence can be understood as the slab detachment prevented the further participation of slab in magma generation. In the study area, there is a westward migration of continental arc magmatism from the late Cretaceous to the Paleogene, accompanied by an increase in zircon ε_{Hf} towards the plutons near the China-Burma border (Xu et al., submitted for publication). The latter reflects the influence of subduction-related arc belt, which is likely located within Burma. When the rotation of the study area relative to the Lhasa terrane is taken into account, this magmatic pattern in the Gaoligong–Tengliang area corresponds to the southward migration of magmatism in the Lhasa Terrane (Wen et al., 2008). This magma migration has been interpreted as a result of slab rollback, which had been accompanied by a southward migration of the asthenospheric convection beneath Tibet (Ding et al., 2003; Chung et al., 2005; Wen et al., 2008; Fig. 11a). A natural consequence of this slab rollback is the break-off of the subducted oceanic slabs owing to gravitational settling (Wortel and Spakman, 2000).

5.5.2. Onset of the rapid cooling of the Gangdese batholiths

Thermal flux lowered the density of the remnant lithosphere thus triggering an uplift of the lithosphere of limited extent (von Blanckenburg and Davies, 1995). This contrasts with the large-scale uplift and

Fig. 11. Diagram illustrating tectonic evolution in Tibetan plateau (modified after Chung et al., 2005). (a) 65–60 Ma: rollback of the formerly flatly subducted Neo-Tethyan slab and generation of the Gangdese arc magmatism. (b) 52–57 Ma: arrival of the Indian continent at the trench leading to the closure of the Neo-Tethys Ocean. During this period, the Gangdese arc magmatism continued because of the enhanced corner flow due to slab rollback. (c) 45–40 Ma: detachment of the Neo-Tethyan slab and generation of the intraplate-type magmas by upwelling asthenosphere through the slab window. This period also marked the cessation of the Gangdese magmatism, and thermal metamorphism.
widespread volcanism envisaged in the convective thinning model. Recent thermotectonic modeling (He et al., 2007) reveals the rapid cooling of the Gangdese granitic batholiths starting from ~42 Ma (Fig. 2). He et al. (2007) attributed this rapid cooling to initial stage of syn-collisional thrusting in southern Tibet or to uplift and erosion in response to delamination of the lower crust and mantle lithosphere or to Neo-Tethyan oceanic lithosphere break-off. Although the distinction between these alternatives is not straightforward, the delamination and break-off models are favored here because the onset of rapid cooling is remarkably coincident with the occurrence of intraplate-type magmas, and syn-collisional thrusting cannot yield intraplate-type magmas.

5.5.3. Eocene thermal metamorphism

In addition to crustal and mantle melting, the thermal flux associated with upwelling asthenosphere through the slab window would cause thermal metamorphism of preexisting rocks (von Blanckenburg and Davies, 1995; Mahéo et al., 2002). This is actually documented in the Himalayan metamorphic record (e.g., Ding et al., 2001; Kohn and Parkinson, 2002; DeCelles et al., 2002). Ding et al. (2001) have investigated the high pressure granulites exhumed in Namche Barwa (Eastern Himalayan Syntaxis), which have a Gangdese arc affinity. Based on U–Pb zircon dating, they showed that these granulites have experienced high pressure metamorphism at ca. 40 Ma (Ding et al., 2001). A similar Eocene thermal metamorphism has been deduced by Kohn and Parkinson (2002) on eclogites from southeastern Tibet. Given the coincidence with the intraplate-type magmatism identified in this study and by Gao et al. (in press), this granulite-facies metamorphism likely recorded thermal flux from uprisng asthenosphere through a slab window.

5.5.4. Geochemical difference between pre-40 Ma and post-40 Ma magmas

As illustrated in Fig. 2, most of the pre-40 Ma magmas in southern Tibet are characterized by positive εNd values and calc-alkaline affinity, whereas most of the post-40 Ma magmas are characterized by high potassic contents and negative εNd. In particular, the ultrapotassic rocks located to west of the longitude of 87°E in the Lhasa Terrane show Sr–Nd isotopic composition that resembles that of the Indian continental basement (Zhao et al., 2003; Guo et al., 2007). Such a temporal variation in magma composition and possibly in magma source can be correlated to the tectonic evolution in this area. The pre-40 Ma magmas were likely related to the subduction of the Neo-Tethyan oceanic plate underneath the Lhasa Terrane. On the other hand, the involvement of the Indian continental component in the post-40 Ma magmas suggests the arrival of the Indian continental plate underneath the Lhasa Terrane since the late Eocene. This magmatic evolution suggests a change from oceanic subduction to continental subduction (Ding et al., 2003) at or slightly earlier than 40 Ma (Fig. 11b). The proposed Eocene slab break-off is in concert with this change because the slab break-off is commonly induced by attempted continental subduction (von Blanckenburg and Davies, 1995; Gerya et al., 2004).

6. Implication for the transition from oceanic to continental crust subduction in Tibet

Continental collision commonly involves the attempted subduction of continental passive margin following the subduction of oceanic plate into the trench. The transition from oceanic to continental crust subduction marks the largest discontinuity in an orogenic cycle. In spite of large number of researches in Tibet Plateau, little concensus has been reached as to the timing of this transition. In particular, the initiation age of the India–Asia collision remains a matter of considerable debate, with views ranging from Late Cretaceous (~65 Ma) to as young as Oligocene (34 Ma) (Searle et al., 1987; Rowley, 1996; Yin and Harrison, 2000; Aitchison et al., 2007). The Eocene intraplate magmatism in the Gaoligong–Tengliang area is temporally and geochemically comparable to 38–42 Ma basalts in the Dazi volcanic basin in the eastern segment of the Gangdese belt (Gao et al., in press). The petrogenetic link of these rocks to slab break-off shed some lights on the onset of the India–Asia collision.

Slab break-off is suggested to occur in the early stages of continental collisions (von Blanckenburg and Davies, 1995; Wong et al., 1997), due to a decrease in the subduction rate damped by the positive buoyancy of continental lithosphere subducted to depth. The subduction of continental crust would cause a decrease in negative buoyancy which generates tensional forces within the slab near the continent/ocean transition (von Blanckenburg and Davies, 1995). As a consequence, slab detachment commonly occurs near the leading edge of continental plate (Fig. 11c). This concept suggests that the initiation of the India–Asia collision must have occurred prior to 42 Ma. Although the timing and depth of slab detachment depend upon many controlling parameters (Wong et al., 1997; Gerya et al., 2004), thermo-mechanical modeling of slab detachment shows that the most favorable time interval for slab break-off is within 10–15 Ma, after the arrival of continental material at the trench (Macera et al., 2008). The validity of these modeled values has been confirmed by studies on various orogenic belts. In the Alps, continental subduction occurred at 55–45 Ma, followed by a singular lamprophyric/granitic magmatic pulse and crustal uplift between 43 and 25 Ma, which are diagnostic of slab break-off (von Blanckenburg and Davies, 1995). By combining the age of the ultrahigh pressure metamorphism of the Tso Morari Complex and the high rate of Indian subduction, Leech et al. (2005) suggested 57 Ma as the onset of India–Asia continental collision in NW Tibet, preceding by 10 Ma the slab break-off process (Kohn and Parkinson, 2002). If the break-off of the Neo-Tethyan slab occurred at 42–40 Ma in eastern Tibet, the time at which the Indian continent arrived at the trench (i.e., closure of the Neo-Tethys Ocean) can be estimated at 52–57 Ma (Fig. 11b). Despite the relatively large uncertainty with this estimation, it provides a working model for further researches. The uncertainty can be decreased if the subduction rate and angle are constrained.

7. Conclusions

The mafic dykes in the Gaoligong–Tengliang belt, that were emplaced at 40 and 42 Ma, differ from the typical arc magmatism but geochemically resemble the intraplate-type magmas, thus providing the petrological evidence for the Eocene asthenospheric upwelling in the studied area. Their derivation from the shallow upper mantle contrasts with the current thick lithosphere beneath the Tibetan Plateau. Therefore, the ~40 Ma magmatism likely represents the response to specific stage of the Tibetan tectonic evoloution. The emplacement of these intraplate-type magmas is temporally coincident with the termination of the Gangdese arc magmatism and regional thermally-driven metamorphism. These, and the geochemical contrast between pre-40 Ma and post-40 Ma magmatism in Tibet, can be well explained by a slab break-off model, in which the intraplate-type magmatism in the Gaoligong–Tengliang belt resulted from partial melting of the upwelling asthenosphere in the course of the break-off of subducting Neo-Tethys slab from the Indian continental plate. This interpretation implies the onset of the India–Asia collision at 52–57 Ma, according to the slab break-off concept and relevant thermo-mechanical modeling.

Acknowledgement

We thank Y. Liu, X.L. Tu and X.R. Liang for technical assistance with ICP-MS and MC-ICPMS analyses. Financial support from the Chinese Ministry of Science and Technology (2002CB412603), the National Natural Science Foundation of China (40721063; 90714001) and the CAS/SAFEA International Partnership Program for Creative Research Teams are gratefully acknowledged. Drs. S.-L. Chung, L. Farmer and Editor B. Bourdon are thanked for their insightful and constructive reviews that substantially improved the paper.