Structural analysis of mylonitic rocks in the Cougar Creek Complex, Oregon–Idaho using the porphyroclast hyperbolic distribution method, and potential use of SC\(^0\)-type extensional shear bands as quantitative vorticity indicators

Gene A. Kurz\(^*\), Clyde J. Northrup

Department of Geosciences, Boise State University, 1910 University Drive, Boise, ID 83725, USA

Abstract

Mylonitic rocks of the Cougar Creek Complex of northeastern Oregon and west-central Idaho provide an opportunity to document the deformational structures produced during general non-coaxial shear within quartz-feldspar mylonites and to explore the potential role of SC\(^0\)-type extensional shear bands in vorticity analysis. Well-developed feldspar porphyroclasts within six mylonite zones were utilized to estimate bulk kinematic vorticity (\(W_k\)) using the porphyroclast hyperbolic distribution (PHD) method. \(W_k\) values for the Cougar Creek mylonites range from \(W_k = 0.26\) to \(W_k = 0.37\). Synthetic and antithetic shear band inclinations were measured relative to observed shear zone boundaries within five mylonite zones with estimated \(W_k\) values and compared to the non-coaxial flow field geometries and eigenvector orientations. In each mylonite zone, synthetic SC\(^0\)-type shear band populations exhibit a range of inclination with maximum inclination lying approximately parallel to the acute bisector (AB) of the eigenvectors. Similarly, antithetic shear band populations show a range of inclination near the obtuse bisector (OB) of the eigenvectors. We infer that SC\(^0\)-type extensional shear bands form initially parallel to AB and OB and rotate towards the flow plane with progressive deformation, decreasing their inclination relative to the shear zone boundary. AB and OB have significance in the strain field in that they represent orientations of maximum angular strain rate. Thus, planes perpendicular to AB and OB are mechanically favorable for small zones of localized simple shear (shear bands) within the heterogeneous bulk strain of the mylonite. Orientation analysis of populations of SC\(^0\)-type shear bands may provide a direct, quantitative means of estimating \(W_k\).

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Quantitative structural analysis may provide valuable information regarding the kinematic vorticity of deformation within mylonitic rocks (e.g., Passchier and Simpson, 1986; Passchier, 1987; De Paor, 1988; Wallis, 1995; Beam and Fisher, 1999; Klepeis et al., 1999; Bailey and Eyster, 2003; Giorgis et al., 2003; Law et al., 2004). The relative contributions of the pure and simple shear end-members present during general non-coaxial progressive deformation may be inferred by utilizing the porphyroclast hyperbolic distribution (PHD) method (Simpson and De Paor, 1993, 1997). In addition, the orientations of SC\(^0\)-type extensional shear bands, measured oblique to the shear zone boundary (Passchier and Trouw, 1998, p. 111), may provide a method of determining bulk kinematic vorticity. The geometric relationship between SC\(^0\)-type shear bands and their associated flow field has been described differently in the past. Some previous workers have observed and interpreted SC\(^0\)-type shear band orientations as being coincidental with the direction of maximum angular shear strain rate (i.e., bisecting the acute and obtuse angles between eigenvectors; Simpson and De Paor, 1993, 1997; Klepeis et al., 1999; Law et al., 2004). Conversely, SC\(^0\)-type shear bands have been interpreted as being oriented parallel to the inclined or unstable eigenvector (Boyarchick, 1986).

Ductile shear zones within the Cougar Creek Complex (CCC) in the Blue Mountains Province (BMP) of northeastern Oregon and west-central Idaho (Fig. 1) provide an opportunity to evaluate the structural development of quartz-feldspar rocks at mid-crustal levels of the Wallowa island arc system. Mylonitic rocks from the CCC exhibit characteristics which make them suitable for PHD analysis: (1) simple mineralogy; and (2) well-developed and easily recognized deformational textures and fabrics (i.e., the presence of...
well-developed porphyroclasts and SC-type extensional shear bands.

2. Regional geologic context

The CCC is one of five basement complexes within the BMP, and is exposed along a 10-km section of the Snake River within Hells Canyon, between Temperence Creek, Oregon and Pittsburg Landing, Idaho. Similar igneous complexes are located in several parts of the Salmon and Snake River canyons, including: (1) along the Snake River near Oxbow, Oregon, (the Oxbow Complex); (2) near the confluence of the Snake and Salmon rivers (the Wolf Creek–Deep Creek and Imnaha Plutonic Complex); and (3) along the Salmon River between Lucile and White Bird, Idaho (Fig. 1).
Igneous rocks of the CCC are composed of dikes and small stocks with a wide range of bulk compositions, including gabbro, diorite, quartz diorite, tonalite, trondhjemite, and their metamorphosed and deformed equivalents (Vallier, 1995; Kurz, 2001). The CCC is interpreted as the mid-crustal expression of the axial zone related to the Wallowa island arc (Vallier, 1995; Kurz, 2001). Similar igneous complexes have also been documented in the Klamath Mountains of northern California (McFadden et al., 2006).

The CCC is structurally complex and penetratively deformed. Ductile shear zones exhibiting both dextral and sinistral senses of shear were generated within a transpressional tectonic environment experiencing predominant strike-slip to oblique-slip kinematic conditions (Kurz, 2001). Individual shear zones range from one centimeter to several meters in width, strike northeast-southwest, and dip moderately to steeply to both the northwest and southeast. Stretching lineations are sub-horizontal to gently plunging to the southwest and northeast (Kurz, 2001). Mineral assemblages and recrystallization textures within mylonitic rocks indicate greenschist facies conditions of metamorphism at the time of deformation.

3. Methods

3.1. Porphyroclast hyperbolic distribution (PHD) analysis

PHD analysis is based on the rotational behavior of rigid elliptical objects within an actively flowing matrix (Simpson and De Paor, 1993, 1997). During general non-coaxial deformation, the rotational behavior of rigid elliptical porphyroclasts is controlled by the bulk kinematic vorticity (W_b), the axial ratio of the mineral grains (R), and the orientation of their long axes with respect to a fixed reference frame (ϕ). Three common reference frames are generally used to evaluate vorticity in plastically deformed rocks: (1) the finite strain axes; (2) the infinitesimal strain axes; and (3) the shear zone boundary (Simpson and De Paor, 1997). Commonly, the shear zone boundary and its normal are employed as a reliable frame of reference if it is exposed in the field (Simpson and De Paor, 1997). Axially asymmetric porphyroclasts whose long axes are inclined “downstream” (a downstream dip-direction) of the bulk transport direction at an orientation that falls within the acute angle between the two eigenvectors of the non-coaxial flow field will rotate opposite to the bulk sense within a narrowing mylonitic shear zone (Fig. 2; Simpson and De Paor, 1993, 1997). However, as the recrystallization of a porphyroclast progresses, its axial ratio decreases and will eventually stall and not back-rotate further. In thin section it is possible to distinguish forward and backward rotating porphyroclasts, measure their axial ratios (R), and determine the orientation of their long axis relative to the normal of the shear zone boundary (ϕ). Thus, a data set may be developed containing shape and orientation data that is then plotted on the hyperbolic net (De Paor, 1988). A best-fit hyperbola is plotted asymptotic to the flow plane such that it separates forward and backward-rotating grains (Simpson and De Paor, 1997). The orientation of the inclined eigenvector may then be estimated as the asymptote to the other side of the best-fit hyperbola. The angle ψ between the two eigenvectors is then used to determine the kinematic vorticity number W_b based on the relationship: $W_b = \cos(\psi)$ (Fig. 3).

3.2. Distinguishing forward and backward-rotated porphyroclasts

Here backward-rotated and forward-rotated porphyroclasts were identified using criteria described by Simpson and De Paor (1993, 1997) for narrowing shear zones. Backward-rotated porphyroclasts are inclined “downstream” relative to the bulk sense of shear and exhibit σ-type asymmetric tails of recrystallized material attached to the broad or long sides of the elongate grain (Figs. 2 and 3; Simpson and De Paor, 1993, 1997). Forward-rotated porphyroclasts were distinguished by (1) approximately equant or spherical δ-grains commonly indicating continuous forward rotation and (2) σ-grains that are inclined “upstream” (an upstream dip-direction) that exhibit recrystallized material attached to their narrow ends (Figs. 2 and 3; Simpson and De Paor, 1993, 1997).

Klepeis et al. (1999) described two varieties of backward-rotated grains based on the following criteria: (1) “upstream” or “downstream” inclined porphyroclasts exhibiting a sense of shear contrary to the bulk direction of transport with σ-type tails of recrystallized material attached to either the narrow or broad sides of the grain (b_1 grains; Fig. 3); and (2) σ-type porphyroclasts inclined “downstream” exhibiting asymmetric tails attached to the broad sides of the grain and a rotational direction concurrent with the bulk flow field (b_2 grains; Fig. 3), synonymous with those described by Simpson and De Paor (1993, 1997). In this study, only b_2 grains were observed and employed in PHD analysis, b_1 grains were not identified. Fig. 3 illustrates a variety of observed porphyroclast geometries and related microstructures that may be observed in thin section, as well as, their relationships within the bulk flow field.

3.3. Shear band analysis

The geometry and shear sense of conjugate SC′-type shear band cleavage (Fig. 3) were measured and analyzed in terms of their potential for: (1) determining the non-coaxiality of general shear zones, and (2) illuminating the relationship between the orientation of initial shear band propagation and the direction of maximum angular shear strain rate. The orientation of SC′-type shear bands was determined utilizing the same methods utilized for measuring ϕ in PHD analysis.

4. Data and observations

4.1. PHD analysis and comparison of shear band orientations

Six mylonite samples from the CCC were analyzed using PHD techniques. Shape and orientation data for measured porphyroclasts and SC′-type shear band geometries are provided as supplementary material or may be requested from the principal author. For each sample the shear zone boundary was discernable and utilized as the reference frame for PHD analysis. In addition, all thin sections were cut perpendicular to foliation and parallel to lineation. Bulk kinematic vorticity numbers determined for the analyzed samples range from $W_b = 0.37$ to $W_b = 0.26$ indicating a significant component of pure shear (76–83% pure shear). W_b
values for this suite of samples indicate that the unstable eigenvectors are inclined 68° to 75° relative to the shear plane (Fig. 4a–f). SC₀-type shear band orientations were measured within five mylonites to compare their geometry with the flow field determined by PHD analyses. Rose diagrams are combined with PHD plots to illustrate SC₀-type shear band orientations and frequency relative to the inferred flow fields of each sample (Fig. 4a–e). Synthetic and antithetic SC₀-type extensional shear band cleavages, when present within thin sections, are discontinuous ranging from 0.1 mm to ~1 mm in thickness.

5. Discussion

Lithologies within the CCC provide an opportunity to document and describe the structural evolution of mylonitic rocks, evaluate the initial direction of extensional shear band propagation, and explore whether or not SC₀-type shear bands may be used as a qualitative to semi-quantitative means of estimating bulk vorticity. SC₀-type shear band orientations were measured within five high strain samples of inferred W; and within two, low strain, coarse to medium-grained quartzo-feldspathic aggregates of unknown bulk vorticity.

Measuring SC₀-type shear band orientations in the field and during petrographic analysis may be time consuming. This poses the question of how many shear band orientations are needed for confident interpretation. To explore this question, 15 random subsets of synthetic SC₀-type shear band orientations for n = 2 to n = 40 were generated from a single large dataset collected from sample CC-5-27-4 (see Supplementary Material). The mean was determined for each of the 15 random subsets. The standard deviation was determined for each list of means and plotted versus the sample size (i.e., n = 2 to n = 40). This data illustrates how the standard deviation of the mean decreases with increasing sample size and levels out after the sample size reaches an adequate size, which corresponds to the minimum number of shear bands needed to obtain a representative sample without measuring the entire population of shear bands (Fig. 5). Based on this analysis, a minimum of 30 shear band orientations is recommended to adequately characterize the mean.

5.1. Extensional shear band propagation

The role of shear bands and their geometric relationship to heterogeneous bulk non-coaxial flow is not well understood. Possibilities include formation along the inclined eigenvector (Bobyarchick, 1986) or parallel to AB (Simpson and De Paor, 1993, 1997; Klepeis et al., 1999; Law et al., 2004). Rose diagrams of shear band orientations measured within mylonites have been combined with PHD vorticity illustrations to provide a direct comparison between the geometric relationships of the eigenvectors and shear band positions (Fig. 4a–e). Synthetic shear band orientations within mylonitic rocks of the CCC are oriented either parallel to, or at an angle less than AB. Similarly, antithetic shear bands populations show a range of inclination with a mean inclination lying near OB. These data provide evidence that extensional SC₀-type shear bands initially form parallel to AB and OB (Platt and Vissers, 1980; Passchier, 1984; Wilson, 1984; Simpson and De Paor, 1993, 1997; Klepeis et al., 1999; Law et al., 2004).

Shear bands that are inclined at an angle less than AB and OB are the result of either: (1) rotation towards the shear zone boundary during progressive non-coaxial deformation; (2) formed under heterogeneous non-steady-state conditions and/or varying bulk vorticity; or (3) formed during separate episodes of deformation. Assuming a steady-state general flow regime, synthetic and antithetic extensional shear bands are expected to rotate towards the stable eigenvector and away from AB and OB throughout progressive non-coaxial deformation. Nucleation of shear bands at an orientation parallel to AB and OB is supported by the data presented here.
Provided that SC'-type shear bands initiate at an orientation parallel to AB and OB, these structures may be utilized to estimate the non-coaxiality of general shear within rocks deformed by crystal-plastic mechanisms. However, the majority of samples in this study display a range of shear band orientations, with mean values frequently observed at an angle less than that of AB and OB. This observation may reflect the rotation of these material lines towards the stable eigenvector throughout progressive strain. Because of the rotational behavior of shear bands after formation, the arithmetic mean of a set of measured SC'-type shear band orientations will likely underestimate the coaxial component of the bulk vorticity. Assuming steady-state vorticity during progressive deformation, the most steeply inclined shear bands may provide the best direct estimate of AB and OB in that shear bands at this orientation may not have been significantly rotated.

Given that material lines such as SC'-type extensional shear bands will rotate towards the stable eigenvector or shear zone boundary in rocks recording larger amounts of accumulated strain (Hanmer and Passchier, 1991; Simpson and De Paor, 1993), it is reasonable to believe that SC'-type shear band orientations within low strain rocks will have potentially undergone lesser amounts of rotation. Thus, at an early stage of deformation, the mean shear
band orientation within a low strain rock will be more representative of the initial position in which they formed (Fig. 6).

Mylonites from the CCC may provide an example of this behavior. SC’-type shear band orientations were used to estimate W_k from five mylonites from the CCC, estimated values were then compared with W_k values inferred from PHD analysis. Estimated values for bulk vorticity within high strain rocks were determined by utilizing the most steeply inclined shear band orientation within ± two standard deviations of the mean in order to eliminate outliers. Generally, the most steeply inclined shear band orientation overestimated the coaxial component of bulk vorticity as compared to values discerned from PHD analysis (Fig. 4a–e). Two samples overestimated the pure shear component relative to inferred W_k values (Fig. 4d and e), however, shear bands from two other samples gave estimates for the angle ϕ within ~ 3° of their graphically determined ϕ angles (Fig. 4a and b). Shear band cleavage orientations from a fifth mylonite underestimated W_k (Fig. 4c). Estimated bulk vorticity derived from shear band analysis range from $W_k \approx 0.50$ to $W_k \approx 0.0$. These estimates correspond to a range of ϕ angles of 60° to 90° which relate to pure shear components of $\approx 67\%$ to $\approx 100\%$.

5.3. Estimating bulk vorticity in lower strain rocks

Petrographic investigation of deformational textures and fabrics in two coarse to medium-grained quartz-feldspar aggregates from the CCC of unknown vorticity indicate a lesser amount of dynamic

![Sample Size -vs- Standard Deviation](image)

Fig. 5. Sample size versus standard deviation. Sample size versus standard deviation illustrates how the standard deviation of a mean shear band orientation decreases with increasing sample size. An optimum sample size was chosen where the slope of the curve begins to flatten near n = 30 to 40.

![Hypothetical Distribution of Shear Bands at Initial Stages of Deformation](image)

(a) Hypothetical Distribution of Shear Bands at Initial Stages of Deformation

Mean = Acute Bisector and Obtuse Bisector

Frequency

Shear Band Orientation

![Hypothetical Distribution of Shear Bands after Accumulated Strain](image)

(b) Hypothetical Distribution of Shear Bands after Accumulated Strain

Mean < Acute Bisector and Obtuse Bisector

Frequency

Shear Band Orientation

Fig. 6. Distribution of shear band orientations. (a) Schematic distribution of shear band orientation which have undergone only a small amount of strain. At this stage of deformation shear bands have not accumulated enough strain to rotate away from AB and OB. The arithmetic mean of a set of measured shear bands may provide a reasonable estimate of the bulk vorticity. (b) Distribution of shear band orientations after accumulated strain (Dark Gray). Notice that the mean of this sample has been skewed to the right, away from AB and OB. Here, the most steeply inclined shear band orientation may provide the best direct estimate of bulk vorticity of a rock mass that has been plastically deformed under steady-state general noncoaxial flow.
recrystallization relative to samples analyzed by PHD techniques. These two samples exhibit moderately to well-defined SC-type shear bands that form an anastomosing network of quartz-dominated microshear zones and enclose large microlithons of feldspar (Fig. 7a and b). Because these coarse to medium-grained quartz-feldspar aggregates appear to have undergone comparatively smaller amounts of strain, the arithmetic mean of shear band orientations has been used to estimate bulk vorticity.

Within these two coarse-grained samples there is definite interaction between large feldspar grains that may influence the orientation of shear bands in a manner that is not representative of the bulk vorticity. This may invalidate conclusions regarding the use of shear band orientations to estimate bulk vorticity, however, not all observed shear bands were associated with grain to grain interaction.

Rose diagrams generated from measured shear band orientations of these two samples reveal a close geometrical relationship with those that were produced for samples where the bulk vorticity is inferred from PHD analyses (Fig. 8a and b). Synthetic shear bands measured within mylonite CC-6-30-1 are inclined at an average
angle of $\sim 30^\circ$, relative to the shear zone boundary (Fig. 8a). Assuming that this average orientation roughly bisects the angle ν, the estimated vorticity is approximately $W_k = 0.50$, where $\nu = 60^\circ$. Shear band orientations for mylonite CC-6-4-1 are, on average, inclined at a slightly higher angle relative to the boundary of the shear zone than those measured within sample CC-6-30-1. The mean inclination (ϕ) of shear bands within sample CC-6-6-4-1 is $\sim 40^\circ$ indicating $\nu = 80^\circ$ (Fig. 8b). The estimated bulk vorticity corresponding to this mean inclination is $W_b = 0.17$. The estimated values of bulk vorticity for these two quartz-feldspar aggregates are similar to values determined for high strain samples, assuming that the deformation within these coarse-grained samples was produced during the same episode of dextral shearing as other right-lateral mylonites. Thus, the mean orientation of a sample of SC^*-type shear bands within lower strain rocks may provide reasonable estimates of the orientations of AB and OB.

6. Conclusions

Analyses combining PHD methods (Simpson and De Paor, 1993, 1997) and measured orientations of SC^*-type extensional shear bands suggest the following: (1) SC^*-type extensional shear bands initially propagate at an orientation parallel to AB and OB (Simpson and De Paor, 1993, 1997; Klepeis et al., 1995; Law et al., 2004); (2) progressive strain following shear band formation produces rotation of shear bands towards the flow plane, generating a mean inclination that is less than the orientation of AB and OB; and therefore underestimates the coaxial component of the general flow regime; (3) the most steeply inclined shear band orientation provides the best direct estimate of W_b within high strain rocks; and (4) shear band orientations within weakly recrystallized rocks may record bulk vorticity more accurately than those measured in high-strain mylonites. Ultimately, SC^*-type extensional shear bands provide a means of broadly characterizing the non-coaxiality of general shear.

Acknowledgements

The authors would like to thank the Boise State University Geosciences department for the facilities to conduct our research and writing. Funding, in part, was provided by the Boise State University Geosciences Student Research Grant (Will and Rose Burnham Fund). The authors would like to specifically acknowledge Dr Richard D. Law of the Department of Geosciences at Virginia Tech; this manuscript has greatly benefited from his careful reviews and criticisms. The principal author would like to thank his wife and family for their encouragement and support during my career in geology.

Appendix A. Supplemental material

Supplementary information for this manuscript can be downloaded at doi: 10.1016/j.jsg.2008.04.003.

References